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Abstract  In this paper, we consider conditions which are necessary for  a directionally differentiable function to have an 

unconstrained local minimum at a point x0 ⋴ X where X is a normed linear space. The necessary conditions are expressed in 
terms of first order directional derivatives of non-linear analysis and certain second order directional derivatives. 

1. Introduction  We consider a function f: X→ℝ 
which is  continuous and directionally 
differentiable on a non-empty open set S. We give 
a necessary condition for f to have a local 
minimum at a point x0 of S. 

Many authors have provided second order 
optimality conditions for  non-linear optimization 
problems. 

Ben-Tal and Zowe [ 2] have developed a general 
theory of second order necessary conditions. 
However, their frame work and point of view are 
very different from ours. Our second order 
conditions are the refinement of the ones given by 
Chaney[3,4 ] for semi smooth functions in finite 
dimensions The concept of second derivatives 
developed by him are are placed entirely within 
the context of non-smooth analysis as set forth by 
Clarke[5]. Other notions of second derivatives have 
been presented by Hirriart-Urruty [ 6], Auslander 
[1 ] and Rockafellar [ 8]. Of these, Chaney's 
approach is closest to that of Rockafellar's.  We 
prove the necessary conditions for a directionally 
differentiable functions in a normed linear space.  

In Section 2, we give necessary preliminaries. 
Section 3 deals with second order necessary 
conditions for an unconstrained problem. 

2.Prliminaries.  Throughout the paper X shall 
stand for a normed linear space and X* its 
topological dual.  f: X→ ℝ . 

Definition2.1 f: X→ ℝ is said to be directionally 
differentiable at x0 ⋴ X if the one sided directional 
derivative of f at x0 in the direction d defined by 

 )()( 00

0
lim λ

λ

λ

xfdxf −+
=

+→

exists for all d in X and 

the function x→ 𝑓′(𝑥0;𝑥) is convex and 
continuous. 

Remark2.1 any continuous convex function is 
locally convex. However, there are non-convex 
functions which are directionally differentiable.  

The following definitions can be seen in [4]. 

Defdinition2.2  Let d ⋴ X. suppose that the 
sequence (𝑥𝑛)→𝑥0 with 𝑥𝑛 ≠ 𝑥0 for every n. then 
we say that xn → x0 in in direction d if the 

sequence 
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Definition2.3 Let d ⋴ X. the set )( 0xfd∂ is 

defined as =

{
}

d 0 n d n

n

f(x ) x X  d and an x f(x ) 

n such that x x

∗ ∗ ∗

∗ ∗

∂ = ∈ ∈∂

∀ →
 

i.e., it consists of those subgradients of f at x0 
which come from direction d. 

Remark2.2 Mifflin has proved that if a function g is 
semi-smooth at x0, then for each direction d, the 
classical directional derivative 𝑔′(𝑥0;d) exists and is 
equal to the limit of every sequence {< 𝑑,𝑥𝑛∗ >} 
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where, for all 
( ) ).(in    toconverging ),( and direction in  000 xgxnxgxdxx nnn ∂∀∂∈→ ∗∗

 

Definition2.4 A multifunction F:X→2Y is upper 
semi-continuous if and only if the set  

 { }φ≠∩∈ BxFXx )(/  is closed for every 

closed subset B of Y. 

Definition2.5 Let d ∈ 𝑋.For any 𝑥0 ∈ 𝑋,𝑓−′′(𝑥0;𝑑) is 
defined to be 

x x  in direction dn 0

0 0''
0 2t 0

f(x) f(x ) tf '(x ;d)
f (x ;d) lim inf

t+

→

−
→

− − 
=  

 
 

and 𝑓+′′(𝑥0;𝑑) is defined by 

 
 

They are respectively called second order lower 
and upper directional derivatives in the direction 
d. If both are equal, then the common value is 
denoted by 𝑓′′(𝑥0;𝑑) and is called the second order 
directional derivative in the direction d. 

3. SECOND ORDER NECESSARY 
CONDITION IN AN UNCONSTRAINED 
PROBLEM 

Before stating the main theorem, we prove the 
following lemma. 

Lemma3.1 Let f:X→ℝ be a continuous directionally 
differentiable function on X. Suppose that for each 
y ⋴ X,  the function x→𝑓′(x;y) is upper semi-
continuous. then the multivalued operator 
𝜕𝑓:𝑋 → 2𝑋∗ given by x→𝜕𝑓(𝑥) is w*-upper semi-
continuous. 

Proof  We are required to prove that the set 

{ }φ≠∂∈= ∗BxfXxA )(/  is closed for 

each w*-closed subset B*of  X*. 

Let x0 ⋴ cl.A, where cl.A denotes the closure of A 
in X. then there exists a sequence xn ⋴ A such that 
(xn) → x0. Further, ∂f(xn)∩B* ≠ 𝜙 for each n. B* being 
closed, it is also norm bounded. It follows that B* is 
w*-compact. Hence, (xn*) has a convergent 

subsequence say ( )
knx converging to a point  x0* 

in B*. 

By passing onto subsequences if necessary we may 
suppose without loss of generality that (xn*) itself 

converges to x0*. Since )( nn xfx ∂∈∗     

Xxxxfxx nn ∈∀≤〉〈 ∗ ),;(',            ...(1) 

Taking limit as n→∞, (1) becomes 

);(');('suplim,lim 0 xxfxxfxx n
n

n
n

≤≤
∞→

∗

∞→
                                        ...(2) 

for all x ⋴ X, since by assumption, the function 
x→𝑓′(x;y) is upper semi-continuous for each  y ⋴ X. 

As ,)( 0
∗∗ → xxn  (2) implies 

);(', 00 xxfxx ≤〉〈 ∗
 which in turn implies 

that 𝑥0∗ ⋴ ∂f(x0). It follows that x0*⋴ ∂f(x0)∩B*. Thus 
x0* ⋴ A. That is, A is closed. 

Hence the lemma. 

Theorem3.1 Let f:X→ℝ be a function continuous 
and directionally differentiable on a non-empty 
open subset S of X. Suppose that x0 ⋴ S is an 
unconstrained local minimizer for f over x in S. Let 
f also satisfy the following two conditions: 

(i)   )()(0);(' 000 xfdxfdxf ≥+⇒≥                                                      

....(3) 

x x  in direction dn 0

0 0''
0 2

t 0

f(x) f(x ) tf '(x ;d)
lim supf (x ;d)

t+

→

+
→

− − 
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(ii)  for each y in X, the function );(' yxfx → is 

upper semi-continuous.        ....(4) 

 Let d0 ⋴ X be such that ∥ 𝑑𝑜 ∥=1 and f'(x0 ; d0) = 0. 
Then given any sequence     (xn)→ x0 in direction 
d0, there exists  a a sequence (xn*) ⋴ ∂f(xn) such that 
the sequence (xn*) →0. That is, 0 ⋴ ∂f(x0). 
furthermore, the sequence  

(f '(xn; d0)→f '(x0; d) and 𝑓−′′(𝑥0;𝑑0) ≥ 0. 

 Proof  Let oδ > 0 such that f(x) ≥ f(x0)  whenever  

x∊ B(xo; oδ )  ⊆ S where  

B(xo; oδ ) = (x ∊ X/ x-xo  < oδ ). Let xn ∊ S be 

such that (xn) converges to xo in direction do. So, xn 

∊ B(xo; oδ ) for all large n. That is, there exists no ∊ 

 such that for all n ≥ no, xn ∊ B(xo; oδ ).  

Hence f(xn) ≥ f(xo), for all n ≥ no                                                                     
...(5)                                                                                                 
From (4) we have  

n 0 0 0
n

lim supf '(x ;d ) f '(x ;d ) 0
→∞

≤ =                                                            

…(6)                                                                                                                                                                                                                              
Claim1  f’(xn;do) ≥ 0, for all n. 

Suppose not. Then there exists an m such that  

f’(xm;do) < 0 

From condition(3) it follows that there exists 0 < λo 
< 1 such that 

 f(xm+λdo) – f(xm) < 0          …(7) 

Now, let a function b: [0, λo] → ℝ be defined by 
b(t) = f(xm+tdo) 

B is continuous in t on a compact set [0, λo]. Hence 
b attains its maximum at a point t0  ⋴ [0, λo]. 

From (7), we have  

f(xm+λodo) = b(λo) < b(0) = f(xm) < f(xm +t0 do)                         
…(8) 

  f’(xm+t0 do; do) ≤ 0 and  f’(xm+t0 do; -do) ≤ 0                            
...(9)                                                                                     

As f’(xm; .) is sublinear, (9) implies that  

f’(xm + t0do ; do) = 0                                                                    
...(10)                                                                                                                             

f’(xm ; .) being positively homogeneous, and t0 < λo, 
(10) gives  

f’(xm + t0 do; (λo – t0)do) = 0                                                          
...(11)                                                                                                                   

(3) and (11) imply 

f(xm+λodo) ≥ f(xm + t0 do) which violates (8) 

This contradiction proves the claim, namely,  

f’(xn; do) ≥ 0 for all n,                                                                   
…(12)                                                                                                                           

Now we choose 

* (x )n nx f∈∂ as <do, *
nx >  = f’(xn ; do)                                              

…(13)                                                    

From (4) and Lemma 3.1, we get a subsequence  

kxfx
kk nn ∀∂∈∗ ),( such that  ∗∗ →

∗

0xx
w

nk
 

for some ∈∗0x  ∂f(xo). Hence by passing on to 

subsequences if necessary, we may suppose that 
*( )nx  itself converges to x0*. From (6), (12) and (13) 

we have  

<do, *
nx > ≥ 0.                                                                                    

...(14)                                                                                                                                                                                       

Hence 0,, 000lim =〉〈=〉〈 ∗∗

∞→
xdxd n

n
                                                 

...(15) 
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* *As x (x ),   ,  ' ;d ) 0o o o o o of d x f x∈∂ < > ≤ < =
                                        …(16)                                                                           

(15) and (16) imply that *,o od x< >  = 0 

Claim 2 

*
ox = 0 

Let g ∊ X* be such that g(do) = od   = 1 and 0 < α 

< 1. 

Define a closed convex cone K  in  X* by  

K = {x ∊ X/ g(x) ≥ αǁxǁ} 

Clearly, do ∊ int K. Give X the order given by K. K 
is a normal cone with interior points ..  g ∊ int K* 
and hence [-g, g] is a neighbourhood of zero in X*. 
∂f(xo) being norm bounded  ∂f(xo) ⊆ [-λg, λg], for 
some λ > 0. 

It follows that ∂f(xo) has a supremum with respect 

to K*, say y0*, Then, 〉〈≥〉〈 ∗∗ xxyx ,, 0  for all x*∊ 

∂f(xo) 

In particular,  

<do, y0*>  > <do, x0*>,  

That is, 0 = f’(x0; do) =  〉〈=〉〈 ∗∗
0000 ,, ydxd  

It follows that ∗∗ = 00 yx  as do ∊ int K and  

∗∗ − 00 yx  is linear. 

Thus x0* is the supremum of ∂f(xo) with respect  to 
the order given by K*. 

Since xo minimizes f over B(xo, oδ ),  0 ⋴∂ f(xo) 

Hence  x0* ≥ 0 and also <do, x0*> = 0,  do ⋴ int K, 
which implies x0* = 0 and the claim is proved. 

Thus ( *
nx ) converges to 0. 

As (xn) converges to xo in direction do by 

assumption, *
nx  ⋴ ∂f(xn) for every n, such that ( *

nx ) 

converges to zero. 

We have 0 ⋴ )( 0xfd∂ and

0);0;( 00
'' ≥
−

uxf  and    

=);(' 0 dxf
n 0 n 0 n

2n n

f(x ) f(x ) x x ,v
lim inf

t

∗

→∞

 − − 〈 − 〉 
 
  

 

taken over all sequences (xn) which converge to xo,  

tn > 0 for all n and (tn) → 0+ such that n o

n

x x
t

 −
 
 

 

converges to do.  

As f’(xo; do) = 0 and f(xn) – f(xo) ≥ 0 for sufficiently 
large n, f’’(xo; do) ≥ 0 

This completes the proof of the theorem. 

Remark3.2 Theorem 3.1 generalizes the following 
theorem of Chaney for semi-smooth functions in 
[14].  

Theorem3.2 Let X= ℝn. Suppose f  is semi smooth 
and locally Lipchitz in an open subset W of ℝn  and 
that x0 is an unconstrained local minimizer for f 
over W. Suppose that u0 is such that ∥ 𝑢0 ∥= 1 and 
f '(x0; u0) = 0. Then 0 ⋴ ∂f(x0); furthermore 

0);0;( 00
'' ≥
−

uxf , where 

0);0;( 00
'' ≥
−

uxf  = 

n 0 n 0 n
2n n

f(x ) f(x ) x x ,v
lim inf

t

∗

→∞

 − − 〈 − 〉 
 
  

taken over 

all triples of  xn ,  tn and vn such that 

(a) tn >0 for each n and (xn)→x0, tn→0, 
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(b) 0
0 u

t
xx

n

n →






 −

 

(c) )( , nnn xfvvv ∂∈→ ∗∗∗  for each n. 

4.CONCLUSION  

Theory of optimization is crowded with various 
types of first and second order derivatives. The 
method of proof given here can be applied to more 
general class of functions. Sufficient conditions can 
be proved and the results may provide a 
foundation for the sensitivity analysis of primal 
and dual problems via Lagrangian. 
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